Path Planning for Minimizing the Expected Cost till Success

نویسندگان

  • Arjun Muralidharan
  • Yasamin Mostofi
چکیده

Consider a general path planning problem of a robot on a graph with edge costs, and where each node has a Boolean value of success or failure (with respect to some task) with a given probability. The objective is to plan a path for the robot on the graph that minimizes the expected cost till success. In this paper, it is our goal to bring a foundational understanding to this problem. We start by showing how this problem can be optimally solved by formulating it as an infinite horizon Markov Decision Process, but with an exponential space complexity. We then formally prove its NP-hardness. To address the space complexity, we then propose a path planner, using a game-theoretic framework, that asymptotically gets arbitrarily close to the optimal solution. Moreover, we also propose two fast and non-myopic path planners. To show the performance of our framework, we do extensive simulations for two scenarios: a rover on Mars searching for an object for scientific studies, and a robot looking for a connected spot to a remote station (with real data from downtown San Francisco). Our numerical results show a considerable performance improvement over existing state-ofthe-art approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient solutions for Stochastic Shortest Path Problems with Dead Ends

Many planning problems require maximizing the probability of goal satisfaction as well as minimizing the expected cost to reach the goal. To model and solve such problems, there have been several attempts at extending Stochastic Shortest Path problems (SSPs) to deal with dead ends and optimize a dual optimization criterion. Unfortunately these extensions lack either theoretical robustness or pr...

متن کامل

A New Multi-objective Model for Multi-mode Project Planning with Risk

The purpose of this problem is to choose a set of project activities for crashing, in a way that the expected project time, cost and risk are minimized and the expected quality is maximized. In this problem, each project activity can be performed with a specific executive mode. Each executive mode is characterized with four measures, namely the expected time, cost, quality and risk. In this pap...

متن کامل

Dynamic Multi Period Production Planning Problem with Semi Markovian Variable Cost (TECHNICAL NOTE)

This paper develops a method for solving the single product multi-period production-planning problem, in which the production and the inventory costs of each period arc concave and backlogging is not permitted. It is also assumed that the unit variable cost of the production evolves according to a continuous time Markov process. We prove that this production-planning problem can be Stated as a ...

متن کامل

3Dana: Path Planning on 3D Surfaces

An important issue when planning the tasks that a mobile robot has to reach is the path that it has to follow. In that sense, classical path planning algorithms focus on minimizing the total distance, generally assuming a flat terrain. Newer approaches also include traversability cost maps to define the terrain characteristics. However, this approach may generate unsafe paths in realistic envir...

متن کامل

Robot Path Planning Using Cellular Automata and Genetic Algorithm

In path planning Problems, a complete description of robot geometry, environments and obstacle are presented; the main goal is routing, moving from source to destination, without dealing with obstacles. Also, the existing route should be optimal. The definition of optimality in routing is the same as minimizing the route, in other words, the best possible route to reach the destination. In most...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.00898  شماره 

صفحات  -

تاریخ انتشار 2018